
Forward-looking Robust Portfolio Selection

Sara Cecchetti∗† Laura Sigalotti∗‡

July 31, 2012

Abstract

In this paper we develop a portfolio optimization strategy based on the extraction of
option-implied distributions and the application of robust asset allocation. We com-
pute the option-implied probability density functions of the constituents of the Euro
Stoxx 50 Index. To obtain the corresponding risk-adjusted densities, we estimate
the risk aversion coefficient through a Berkowitz likelihood test. The correlation
structure among the stocks is computed via an ad hoc technique, which provides
a correction term for the historical correlations. We implement a robust portfolio
construction, in order to incorporate the uncertainty about the estimation error for
the expected returns in the optimization procedure.
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1 Introduction

Modern portfolio theory was introduced by Markowitz (1952), who laid the foundations
of mean-variance optimization. This strategy, which is still widely used in the financial
industry despite the many criticisms that have been leveled against it, is based on the
estimation of the first two moments of the probability density function of the asset
returns. The standard way to estimate these moments is based on the use of historical
data (see, among others, De Miguel, Garlappi and Uppal (2009), for a review of various
estimators). It is well known that the estimation errors that inevitably arise when using
such backward-looking approach affect the calculation of the optimal portfolio, since
mean-variance optimizers are very sensitive to small variations in expected returns.1 An
alternative methodology has been adopted by Kostakis, Panigirtzoglou and Skiadopoulos
(2010), who developed a forward-looking approach based on the information extracted
from option prices. They implement a strategy which uses option implied distributions
of asset returns to calculate an optimal portfolio consisting of two assets, one risk-
free and one risky. Once the risk-neutral implied distributions are extracted, they are
converted into the related risk-adjusted (or real-word) distributions, that are required
in the calculation of optimal portfolios. As the implied distributions reflect the market
participants’ expectations, this approach is inherently forward-looking and may provide
more accurate estimates of the distribution, and the related moments, to be used in the
asset allocation problem.

In this paper, we aim at extending the strategy developed in Kostakis, Panigirtzoglou
and Skiadopoulos (2010) to a portfolio of many risky assets. Among the different tech-
niques developed in the finance literature to extract risk-neutral densities (see Bedoui and
Hamdi (2010) for a review of these methods), we use the mixture of lognormals approach.
Once the risk-neutral distributions are estimated, we convert them into the risk-adjusted
ones by assuming a power utility function, in which the risk-aversion coefficient is cho-
sen so that it maximizes the forecasting ability of the risk-adjusted distributions (with
respect to the future realizations of the underlying index), using an approach similar to
the one followed by Bliss and Panigirtzoglou (2004).

It is worth noting that the generalization of the option-implied distribution approach
to a portfolio of many risky assets is not straightforward. In fact, if we consider N
stocks and N options written on these stocks, option prices convey information about
the distribution of each stock price, but they do not provide any insight on the correlation
structure among the N stock prices. The correlation structure could be inferred using
only historical data, but this would give a matrix of covariances incoherent with the
option implied variances of the N stocks. In order to tackle this issue, we focus on a
collection of stocks satisfying two conditions:

• each stock is the underlying asset of a quoted option (actually, we need a family
of call and put options for each stock, corresponding to different strikes);

1See, e.g., Ceria and Stubbs (2006) for details.
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• there exists a family of options written on a index made up of all the stocks in our
set, with publicly available index weights.

In order to meet these requirements, we consider a portfolio consisting of the 50 stocks
of the the Euro Stoxx 50 Index. Using the market information about the index option
prices, we derive the implied probability density function of the stock index and hence,
in particular, its variance. Through an ad-hoc technique,2 we integrate the historical
covariance matrix of the stock returns with the implied volatilities of the stocks and the
index and we derive a correlation structure that can be considered a proper estimation
of the real-world covariance matrix of the stock returns. In particular, once we have
computed the risk-adjusted standard deviations of the stock returns, the risk-adjusted
standard deviation of the index return, and the historical correlation matrix of the
stocks returns, we estimate a correction term for the historical correlation matrix which
guarantees the coherence between the option-implied volatility of the index and the
volatility of the corresponding portfolio of stocks.

Finally, we implement a robust portfolio construction (see Ceria and Stubbs (2006),
for a detailed description) to cope with the estimation errors in the estimates of the
expected returns and their error-magnification effect. Mean-variance portfolios tend to
exacerbate the estimation error problem by significantly overweighting assets with an
error to the upside of the expected returns and underweighting assets with an error to
the downside. Robust optimization considers the estimation errors for the mean returns
directly in the optimization problem itself, in order to perform an asset allocation that
is robust to these errors. Namely, the robust optimization approach takes a confidence
region for the estimated mean returns, and performs a portfolio optimization accounting
for the worst case scenario that could be realized in that confidence region.

Once we have implemented the robust portfolio construction, we compare our re-
sults to the efficient frontiers obtained with different methodologies. In particular, we
compute the true frontier, the Markowitz estimated frontier and the Markowitz actual
frontier, that are, respectively: the efficient frontier computed using true expected re-
turns (unobservable and derived through an equilibrium argument); the efficient frontier
obtained with estimated expected returns and Markowitz mean-variance portfolio selec-
tion; the frontier obtained by calculating true expected returns of the portfolios on the
Markowitz estimated frontier. The robust portfolio construction is used to get both a ro-
bust estimated frontier and a robust actual frontier, which are compared to the previous
ones.

We also compare the out-of-sample performance of our robust portfolio to those of
the index buy-and-hold strategy and of two alternative portfolios: the equally-weighted
portfolio of De Miguel, Garlappi and Uppal (2009) (in which we build a portfolio with
all the N stocks in the index, by assigning weight 1/N to each one) and a momentum
strategy, in which we select the G stocks with positive returns in the previous year and
allocate a portfolio with weight 1/G on these stocks. Our comparisons use two stan-
dard performance criteria: the out-of-sample Sharpe Ratio and the Certainty-Equivalent

2In the paper by Buss and Vilkov (2011), a similar approach is applied to a different context.
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(CEQ) return for the expected utility of a mean-variance investor. We find that our ro-
bust portfolio has the best performance according to both criteria.

The rest of the paper is structured as follows. Section 2 describes the mixture of
lognormals method that we apply to estimate the option-implied risk-neutral densities.
Section 3 outlines the methodology adopted to convert the risk-neutral densities into the
related risk-adjusted densities. In Section 4 we derive the option-implied risk-adjusted
covariance matrix and Section 5 explains the robust optimization approach. The dataset
used for the empirical application is described in Section 6 and the results are presented
in Section 7. Finally, Section 8 presents the conclusions.

2 Option-Implied Risk Neutral Densities

2.1 The mixture of lognormals method

In the financial literature many methods have been proposed for the estimation of option-
implied risk-neutral densities.3 In particular, two methods have been widely studied and
implemented. The first one, know as the “smile interpolation approach”, is based on
the interpolation of the implied Black-Scholes volatility smile and requires no parametric
assumptions on the risk-neutral densities. The starting point of this method is the result
by Breeden and Litzenberger (1978), who prove that the second derivative of the price
of a call option with respect to the exercise price K, computed for a given value of
the underlying price S, is equal to the risk neutral density f of the underlying asset,
evaluated in S and discounted by the risk free rate:

∂2C(K)

∂K2
= e−r(T−t) f(S).

In order to determine f(S) from the previous formula, we need a sufficiently smooth
expression for C: Shimko (1993) showed that fitting the implied Black-Scholes volatility
smiles gives much better results than interpolating observed call prices directly.

An alternative approach is to assume a specific parametric form for the risk-neutral
density (RND) functions and adjust it to the market data. The parameters of the RNDs
are calibrated through the use of observed option prices and nonlinear least squares.
The most commonly used functional form for the RNDs is a mixture of two or more
lognormals; this choice gives a density function that is sufficiently flexible to reflect
characteristics such as excess kurtosis, asymmetry, and even bimodality.

In this paper we follow the parametric approach to estimate the option-implied prob-
ability density functions (PDFs), calibrating a mixture of lognormals4 for the PDFs of
the 50 stocks and the stock index. In what follows we briefly describe the mixture of
lognormals method.

3For a review and comparison of the different estimation methods, see Bedoui and Hamdi (2010).
4See Bahra (1996), Melick and Thomas (1997) and Sodernlind (1997) for a detailed description.
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Let St be the price of an underlying asset which pays a continuous dividend Dt,
which follows the dynamic

dDt = δStdt, (1)

δ being a positive constant. We also assume that the underlying asset follows the cum-
dividend price dynamics of a generalized Black and Scholes model (BSMG), that is a
geometric Brownian motion:

dSt = µStdt+ σStdWt, (2)

where µ = r − δ, r is the continuously compounded risk-free rate and Wt is a standard
Brownian motion.5

As well known, the price at time t of a call option on such underlying, with strike
K and maturity T , is given by the expected value (under the risk-neutral probability
measure) of the option at maturity, discounted at the risk-free interest rate:

C(St,K, T − t, r, δ, σ) = Ste
−δ(T−t)Φ(d1)−Ke−r(T−t)Φ(d2),

where Φ(·) is the standard normal cumulative distribution function, f is the risk-neutral
density of the price ST and

d1 =
log
(
St
K

)
+
(
r − δ − 1

2σ
2
)
(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

The random variable ST follows a lognormal distribution with mean m = (log(St)+(r−
δ)− σ2/2)(T − t) and variance σ2(T − t), i.e. its risk neutral density f satisfies

f(ST ) = l(ST ,m, σ) =
1

ST
√

2πσ2(T − t)
e
− [log(ST )−m]2

2σ2(T−t) .

A mixture of lognormals is defined as a convex combination of M lognormal densities in
which the parameters m and σ can take different values:

q(ST ; θ) =
M∑
i=1

αil(ST ,mi, σi), (3)

where θ represents the unknown parameters αi,mi, σi, for i = 1, . . . ,M .6

If the price ST of the underlying asset follows a distribution given by equation (3),
then the corresponding option price, for a given strike K and time to maturity T − t,
equals

CMIX(St,K, r, T − t, θ) =
M∑
i=1

αi[Ste
−δi(T−t)Φ(d1,i)−Ke−r(T−t)Φ(d2,i)],

5The ex-dividend dynamics of the underlying is dSt − dDt = rStdt+ σStdWt.
6Of course, αi > 0, for each i, and

∑
i αi = 1.
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where

d1,i =
log
(
St
K

)
+
(
r − δ − 1

2σ
2
i

)
(T − t)

σi
√
T − t

,

d2,i = d1 − σi
√
T − t.

In this paper we use a mixture of two lognormals (M = 2). As we deal with market
data for American options (both on the Euro Stoxx 50 Index and on the constituent
stocks), the above formula has to be adjusted conveniently. In particular, for each option
we calculate the early exercise premium by computing the Barone-Adesi correction term
through an iterative procedure.7 Then, we subtract the correction term from the market
price of the American option to obtain the corresponding European option price. This
price is now matched to the value CMIX obtained as follows:

CMIX(St,K, r, T − t, α, δi, σi) = αCBSM (St,K, T − t, r, δ1, σ1)
+(1− α)CBSM (St,K, T − t, r, δ2, σ2),

where CBSM (St,K, T − t, r, δ, σ) denotes the standard Black and Scholes (1973) for-
mula for options on a dividend-paying underlying. Finally, we estimate the parameters
α, δ1, δ2, σ1, σ2 that better replicate the observed market prices of the options.

3 Option-Implied Risk Adjusted Densities

In the previous paragraph we described the method we used to extract the option-implied
risk neutral densities from market data. In order to perform a portfolio optimization we
need to know the real-world probability density functions. To this end, we convert the
RNDs into the corresponding risk-adjusted PDFs.

If there exists a representative agent with utility function U(·), then the link between
the risk-neutral distribution measured at time t, qt(ST ), and the real world distribution
pt(ST ) of the asset price ST , is given by

pt(ST ) =
qt(ST )

ζ(ST )

(∫ qt(x)

ζ(x)
dx
)−1

, (4)

where

ζ(ST ) = e−r(T−t)
U ′(ST )

U ′(St)
(5)

is the so-called pricing kernel. Equation (5) follows from the first-order condition of the
intertemporal expected utility maximization problem of the representative agent (see
Ait-Sahalia and Lo (2000) for a detailed discussion). We assume that the representative

7See Barone-Adesi and Whaley (1987) for details.
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agent maximizes a power utility function,8 defined as

U(W ) =
W 1−γ − 1

1− γ
, γ 6= 1,

where γ is the coefficient of constant relative risk aversion (RRA) that must be estimated.
According to our choice of the utility function, we compute the risk-adjusted density from
the risk-neutral density as

pt(ST ) =
qt(ST )SγT∫
qt(x)xγdx

. (6)

In particular, we assume that the risk aversion coefficient is the same for the index
and for all the constituent stocks, reflecting the view of a unique representative agent
who decides how to allocate his investments among a class of assets. In the following
paragraph we will describe the method we use to estimate the risk aversion coefficient
γ, following the approach of Bliss and Panigirtzoglou (2004).

3.1 Option-Implied Risk Aversion coefficients estimates

In this paragraph we deal with the estimate of the optimal risk aversion coefficient γ.
We consider options on the Euro Stoxx 50 Index, with monthly maturities ranging from
20 November 2009 to 17 June 2011, thus getting 20 admissible expiration dates. We fix a
time-to-maturity of 78 days (0.21 years) and we consider the option prices in the dealing
date 78 days ahead each maturity date. Having fixed a pair dealing date/maturity
date, we extract the corresponding risk-neutral probability density functions using the
mixture of lognormals method described in Section 2.1. For each value of the parameter
γ, chosen in the range {0.5, 0.6, 0.7, . . . , 9.8, 9.9, 10}, we convert the 20 RNDs into the
corresponding risk-adjusted probability density functions, using equation (6). For each
γ we evaluate the forecasting ability of the corresponding risk-adjusted PDF, then we
select the value of the risk aversion coefficient which maximizes the consistency of future
realizations of then index price with the option-implied probability density functions. In
what follows we describe the method used to select γ, which is based on a Berkowitz
likelihood ratio statistic.9

Having fixed a maturity date T , the corresponding dealing date t and a value of γ,

we extract the risk-adjusted probability density function p
(γ)
t (·) for the index price ST

using the procedure explained in the previous paragraphs (see equation 6). If we denote

by qt(·) the option implied risk neutral density, we recall that p
(γ)
t (·) is given by

p
(γ)
t (ST ) = qt(ST )SγT

(∫ +∞

0
qt(x)xγdx

)−1
.

8This choice guarantees the integrability of x 7→ qt(x)/U ′(x) when qt is a mixture of lognormals. If
we had adopted an exponential utility function, for instance, the corresponding function would have had
an infinite integral.

9See Berkowitz (2001) for details.
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We want to test the hypothesis that the estimated PDFs p
(γ)
t (·) are equal to the true

(unknown) PDFs ft(·). At time t we forecast the future realizations of the index price
at time T using the risk-adjusted density pγt (·). At time T we observe the realized value
of the price, which we denote here by Xt to remind that it has to be compared with its
expected value computed at time t. The null hypothesis states that the realizations Xt

are independent and that pγt (·) = ft(·). If this hypothesis is verified, then the inverse
probability transformations of the realizations

yt =

∫ Xt

−∞
p
(γ)
t (u)du (7)

are i.i.d. ∼ U(0, 1).

The Berkowitz likelihood ratio statistic allows to test jointly for uniformity and
independence. To implement this methodology we consider the transformation of yt

zt = Φ−1(yt) = Φ−1
(∫ Xt

−∞
p
(γ)
t (u)du

)
, (8)

where Φ(·) is the normal cumulative density function. In order to test the independence
and standard normality of the zt, Berkowitz (2001) uses the maximum likelihood to
estimate the following autoregressive model of order 1

zt − η = θ(zt−1 − η) + εt, (9)

and tests restrictions on the parameters of the AR(1) using a likelihood ratio test. Under
the null hypothesis, the model has the following parameters: η = 0, θ = 1, σ2 :=
V ar(εt) = 0. The log-likelihood function for this model10 is given by

L(η, σ2, θ) = −1

2
log(2π)− 1

2
log[σ2/(1− θ2)]− {z1 − [η/(1− θ)]}2

2σ2/(1− θ2)

−[(τ − 1)/2] log(2π)− [(τ − 1)/2] log(σ2)−
τ∑
t=2

[
(zt − η − θzt−1)2

2σ2
].

Under the null hypothesis, the likelihood ratio statistic

LR3 = −2[L(0, 1, 0)− L(η̂, σ̂2, θ̂)]

is distributed as a chi-squared with 3 degrees of freedom, χ2
3. The risk aversion param-

eter γ is chosen as the value which maximizes the p-value of the Berkowitz LR3 statistic,
which is a measure of the forecast ability of the correponding risk-adjusted PDFs.

As the presence of overlapping data may induce autocorrelation11 and lead to the
rejection of any value of γ, we selected a subsample of the time series, such that the
maturity date of the n-th option is prior to the dealing date of the (n+1)-th option. We

10See Hamilton (1994), equation (5.2.9).
11See Bliss and Panigirtzoglou (2004).
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found that the p-value of the Berkowitz test is maximized for γ̂ = 1.5. This value is not
far from the option-implied risk aversion estimates obtained by Bliss and Panigirtzoglou
(2004), who compute the representative agent’s risk aversion at different horizons, getting
values between 1.97 and 7.91. They consider forecast horizons ranging from 1 to 6 weeks
and suggest that the risk-aversion coefficient tends to decrease as the time lapse increases.
Since our forecast horizon is 11 weeks, the optimal value of γ̂ = 1.5 seems reasonable.

3.2 Risk Adjusted Expected Returns and Variances

Having estimated the risk aversion parameter γ, we assume that it reflects the repre-
sentative agent’s view for all the constituents of the Euro Stoxx 50 Index. Then, we
use equation (6) to compute the risk-adjusted densities ft

i(·) = pγ̂t,i(·) for the underlying

prices SiT , where i ∈ {1, . . . , 50}, t = 31 March 2011 and T = 17 June 2011.

To perform the asset allocation we need to know the estimated expected returns and
the estimated return variances, given by

µi = E[log(SiT )− log(Sit)] =

∫ +∞

0
log(x)f it (x)dx− log(Sit) (10)

and

(σRAi)
2 = V ar(log(SiT )− log(Sit))

=

∫ ∞
0

(log(x))2f it (x)dx−
(∫ +∞

0
log(x)f it (x)dx

)2

.
(11)

The risk-adjusted density of the index price is denoted by f Indt ; its return variance equals

(σRAInd)
2 = V ar(log(ST

Ind)− log(St
Ind))

=

∫ +∞

0
(log(x))2ft

Ind(x)dx−
(∫ +∞

0
log(x)ft

Ind(x)dx

)2

.
(12)

4 Option-Implied Risk Adjusted Covariance

We compute the risk-adjusted variance-covariance matrix for the individual stock returns
in our portfolio, using the (risk-adjusted) standard deviations of the stocks returns, the
(risk-adjusted) standard deviation of the index returns and the historical correlation
matrix of the stocks returns. The historical correlations are estimated using six years of
daily returns Ri,t and the exponential weighted moving average method.12 We propose
an ad hoc method to combine the implied volatilities with the historical correlations,
through the computation of a correction coefficient β.

12See, among others, Mills and Markellos (2008).

8



4.1 Historical correlation matrix

An exponentially weighted moving average applies weighting factors which decrease ex-
ponentially as the observations become more and more distant in time. As in Risk-
Metrics,13 we consider a smoothing constant λ = 0.94 and we compute the m-period14

historical covariances between stocks i and j, measured at time t+ 1, as

σhij,t+1 =

∑m
τ=1(Ri,t+1−τ −Ri)(Rj,t+1−τ −Rj)λτ−1

1 + λ+ λ2 + . . .+ λm−1
, (13)

where for each stock Ri = 1
m

∑m
t=1Ri,t. Hence, m-period historical variance of stock i,

measured at time t+ 1, is given by

(σhi,t+1)
2 =

∑m
τ=1(Ri,t+1−τ −Ri)2λτ−1

1 + λ+ λ2 + . . .+ λm−1
.

The related correlations are given by

ρhij,t+1 =
σhij,t+1

σhi,t+1σhj,t+1
, (14)

where σhi,t+1 is the historical standard deviation for stock i.

4.2 Implied Risk-Adjusted Correlation Matrix

Once we have calculated the historical correlations, we compute a perturbed correlation
matrix which takes into account the option-implied estimates.15 We denote by εij,t the
difference between the historical correlations of stocks i and j and our risk-adjusted
correlations, computed at time t:

ρ̂RAij,t = ρhij,t + εij,t. (15)

We assume that the correction term can be written in the form

εij,t = βt ×
(σRAInd,t)

2

σRAi,tσRAj,t
, (16)

where σRAInd,t is the risk-adjusted implied standard deviation of the index, σRAi,t is the
risk-adjusted implied standard deviation of stock i, and βt is the unknown coefficient
to be estimated. This choice for the correction term allows to take into account the
option-implied risk-adjusted variances for both the stocks and the index. Moreover,
the magnitude of the term εij,t is comparable to the one of the historical correlations
ρhij,t. In order to estimate βt, we impose that the option-implied variance of the index

13See RiskMetrics (1996).
14We consider daily data from 8th July, 2005 to 1st April, 2011, so that m=1495.
15A similar approach, but in a different context, is used by Buss and Vilkov (2011).
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is equal to the variance of the portfolio made of the constituent stocks, calculated with
the option-implied stock variances:

(σRAInd,t)
2 =

∑
i

∑
j

wiwjσ
RA

ij,t

=
∑
i

wi
2(σRAi,t)

2 +
∑
i

∑
j 6=i

wiwjσ
RA

i,tσ
RA

j,tρ
RA

ij,t,
(17)

where wi are the index portfolio weights. Having assumed that formula (16) describes
the correction term, the risk-adjusted correlations defined in (15) must be re-normalized:

ρRAij,t =
ρ̂RAij,t√

ρ̂RAii,t

√
ρ̂RAjj,t

. (18)

Plugging equation (18) in (17), we get

(σRAInd,t)
2 =

∑
i

∑
j

wiwjσ
RA

i,tσ
RA

j,t

×
ρhij,t + βt ×

(σRAInd,t)
2

σRAi,tσRAj,t√
ρhii,t + βt ×

(σRAInd,t)2

(σRAi,t)2

√
ρhjj,t + βt ×

(σRAInd,t)2

(σRAj,t)2

.

Since βt is the only unknown variable in the previous expression, we can calculate it
by implementing a numerical method in Matlab. Once we have obtained βt, we can
compute the implied risk-adjusted correlations ρRAij,t and consequently the risk-adjusted
covariances

σRAij,t = ρRAij,tσ
RA

i,tσ
RA

j,t.

We proposed this ad hoc method to use all the available information, arising both
from the options on the index and from the options on the 50 stocks. The option-implied
risk-neutral densities do not provide any information about the correlation structure
among the stocks, hence we decided to use as a starting point the historical correlation
matrix given by an exponentially weighted moving average model. This historical corre-
lation matrix is then modified by the introduction of a correction coefficient β, chosen so
that it guarantees the matching between the option-implied volatility of the index and
the volatility of the corresponding portfolio of stocks.

As an output of the numerical computations, we obtained that the optimal correction
term is βt = 0.97 per cent, for t = 31 March 2011.

5 Robust optimization

In this paragraph we show how we applied the robust portfolio construction to our
setting. The robust optimization methodology has been developed to cope with esti-
mation errors in the estimates of the expected returns and their error-magnification
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effects. It is well known that mean-variance portfolios tend to exacerbate the estima-
tion error problem by significantly overweighting assets with an error to the upside and
underweighting assets with an error to the downside. Robust optimization considers
the estimation errors for the mean returns directly in the optimization problem itself,
and aims at performing an asset allocation that is robust to these errors. Namely, the
robust optimization approach fixes a confidence region for the estimated mean returns,
and performs a portfolio optimization accounting for the worst case scenario that could
be realized in that confidence region.

We want to select the minimum-variance portfolio over all asset allocations which
guarantee an expected return bigger than or equal to a fixed target r̄. Let R be the N -
dimensional random variable describing the random returns of the N available stocks.
Let µ and Σ = (Σij)1≤i,j≤N be the mean vector and the variance-covariance matrix of
the stock returns. Having fixed r̄ > 0, we aim at solving the following problem:

min
w

w′Σw

s.t. µ′w ≥ r̄
1′w = 1.

(19)

It is well known that the estimation of expected returns is a particularly challenging
problem, since errors in estimated mean returns are the main determinants of optimal
portfolio estimation risk (they account for most of the estimation error, in much bigger
measure than errors in estimated variances). A possible way to face this issue consists in
considering uncertainty in unknown parameters explicitly in the optimization problem.
This approach, which is part of the robust optimization field, was introduced by Ben-Tal
and Nemirovski (1997) for robust truss topology design. In what follows, we describe
how robust optimization can be applied to our asset allocation problem, following the
approach of Ceria and Stubbs (2006).

Since the true value of µ cannot be known with certainty, we model it as a random
variable whose dispersion represents the possible estimation error. In particular, we
assume that µ is normally distributed around its best guess π:

µ ∼ N(π,Q), (20)

where the N -dimensional matrix Q represents the uncertainty of the guess. Actually it
is not necessary to assume normality: the same arguments hold with minor changes if
we assume that the distribution of µ is elliptical.

Since we do not have any a priori information on the covariance matrix Q of the
dispersion error, we can simply assume that Q is the n-dimensional identity matrix.
Given the best guess vector π, with probability η ∈ [0, 1] the vector of actual expected
returns lies inside the confidence region

E = {µ ∈ Rn : (µ− π)′Q−1(µ− π) ≤ κ2}, (21)

where κ2 = F−1n (1 − η) and F−1n is the inverse cumulative distribution function of a
chi-squared distribution with N degrees of freedom. In the definition of E the variables
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Q and κ represent respectively the shape and the size of the ellipsoid. In particular we
set κ2 = Var(π01, . . . , π

0
n), i.e. κ2 is the cross-sectional variance of the mean returns.

Our goal consists in performing a portfolio optimization which accounts for the worst-
case scenario, hence we want to solve the following minimum-variance problem:

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1.

(22)

In the following paragraph we will describe the cutting plane algorithm we implemented
to find a numerical solution of problem (22).

A key issue in the implementation of the robust asset allocation is the determination
of the best guess vector π, which is the starting point of the robust optimization method.
In this paper the vector π is set through an equilibrium argument.16 If there were no
estimation error, i.e. Qij = 0 for all i, j ∈ {1, . . . , n}, then µ = π a.s. and the stock
returns would follow the distribution

R ∼ N(π,Σ).

In this scenario we could assume that all investors maximize a mean-variance trade-off
and that the maximization is unconstrained; the investors’ optimization problem would
read as

w̃ = arg max
w

{w′π − λw′Σw},

where λ is the coefficient of risk aversion. By imposing the first order conditions we find
the following link between the equilibrium returns π and the optimal weights w̃:

π = 2λΣw̃. (23)

In our portfolio optimization we will take λ equal to the value of the risk aversion
coefficient γ we obtained in section 3.1, i.e. the value which maximizes the forecast
ability of the densities implied in the index options. The weights w̃ will be equal to the
weights of the stock index.

In the empirical part of this work, we computed the robust efficient frontier in two
different ways: first of all we calculated the actual robust efficient frontier, in which the
starting point of the robust optimization was the equilibrium vector π defined in (23).
Then we computed the estimated robust efficient frontier, in which the starting point
was the vector π̂, obtained as follows: we randomly generated a time-series of normally
distributed returns (with mean π and variance Σ) and we computed the average π̂ to
use as an estimate of the expected returns.

16See, among others, Meucci (2010) for a detailed explanation.
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5.1 The Cutting Plane approach

The solution to problem (22) is not straightforward, due the presence of the first con-
straint: the admissible weights w must satisfy the nonlinear condition µ′w ≥ r̄ for all
µ belonging to the uncountable set E. In order to find a numerical solution to this
problem, we implement a cutting-plane algorithm.

1. First of all, we set µ0 = π and we define S0 = {µ0}. Then we solve the constrained
problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ S0, 1′w = 1.
(24)

Let w0 be the solution of (24).

2. We want to determine the vector of expected returns which corresponds to the
worst case scenario given the weights vector w0. Namely, we determine µ1 =
arg minµ{µ′w0 : µ ∈ E}. Now, two outcomes can occur:

• either µ′1w0 ≥ r̄, which implies that w0 is a feasible solution for problem (22).
In this case the algorithm ends and w̃ = w0 is the optimal weights vector;

• or µ′1w0 < r̄, which implies that w0 is not an admissible solution for problem
(22), since it violates the first constraint. In this case the procedure continues
with the updated constraints set S1 = {µ0, µ1}. We find the solution w1 of
the optimization problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ S1, 1′w = 1.

Note that the vector µ1 can be computed analitically. In fact, µ1 is the solution of
the minimization problem

min
µ∈E

µ′w0. (25)

For a fixed µ ∈ E, we set v = Q−1/2(µ − µ0), so that µ = µ0 + Q1/2v. Now, µ
belongs to E if and only if (µ− µ0)′Q−1(µ− µ0) ≤ κ2; there follows that µ ∈ E is
equivalent to ‖v‖2 = v′v ≤ κ2. Hence the minimum problem in (25) is equivalent
to

min
‖v‖2≤κ2

(µ0 +Q−1/2v)′w0. (26)

Now, problem (26) can be solved analytically and its unique solution is

v1 = −κ Q1/2w0

‖Q1/2w0‖
.

The corresponding vector µ1 is the solution of problem (25):

µ1 = µ0 +Q1/2v1 = µ0 − κ
Qw0√
w′0Qw0

. (27)
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3. When we reach the j-th iteration, we start with a constraints set Sj−1 = {µ0, . . . , µj−1}
and a vector of weights wj−1 which solves the minimum-variance problem

min
w

w′Σw

s.t. µ′w ≥ r̄ for all µ ∈ Sj−1, 1′w = 1.

Then, we determine the worst-case expected returns µj = arg minµ{µ′wj−1 : µ ∈
E}. We can find an explicit formula for µj arguing as above:

µj = µ0 − κ
Qwj−1√
w′j−1Qwj−1

.

Then we look at the scalar product µ′jwj−1 and we get one of the following out-
comes:

• if µ′jwj−1 ≥ r̄, then we have found the solution w̃ = wj−1 to problem (22)
and the algorithm ends;

• otherwise, if µ′jwj−1 < r̄, then we iterate the procedure.

For a general discussion of cutting-set methods for robust convex optimization and their
convergence see e.g. Mutapcic and Boyd (2009).

5.2 Constraints on the portfolio weights

In general, mean-variance efficient portfolios constructed using sample moments often
assign extremely negative and positive weights to a number of assets. Since negative
portfolio weights (short positions) are difficult to actually implement, many investors
impose no short-sale constraints (i.e., portfolio weights must be nonnegative). This
choice finds empirical support in the paper of Jagannathan and Ma (2003), that shows
how imposing appropriate constraints improves the efficiency of the constructed opti-
mal portfolios. In particular, the authors show that constraining portfolio weights to
be nonnegative is equivalent to shrinking the sample covariance matrix (i.e., reducing
its large elements) and then forming the optimal portfolio without any restriction on
its weights. They show that each of the no short-sale constraints is equivalent to re-
ducing the sample covariances of the corresponding asset with other assets by a certain
amount. The intuition behind this result is due to the fact that assets that have high
covariances with other stocks tend to get extreme negative portfolio weights. The paper
also shows that imposing upper bounds on portfolio weights does not lead to a signif-
icant improvement in the out-of-sample performance of minimum risk portfolios when
no short-sales restrictions are already in place, but a constraint from above can help in
the practical construction of the portfolio. Summarizing the authors findings, we can
say that constructing a minimum risk portfolio subject to the constraint that portfolio
weights are positive (negative) is equivalent to constructing it without any constraint on
portfolio weights after modifying the covariance matrix by a modification that shrinks
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the larger elements of the covariance matrix towards zero (towards one). The striking
feature of minimum-variance portfolios with no-short-sale constraints is that in such
portfolios investment is spread over only a few stocks, while imposing upper bounds on
portfolio weights can ensure that optimal portfolios will contain a large enough collection
of stocks.

In this paper we implement the asset allocation strategy in two different ways:17

first, we impose no short-sale restrictions and then we constrain the portfolio weights
to be in the interval [−1, 1]. In the first case our minimum-variance problem (22) thus
becomes

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1

wi ≥ 0 i =1, . . . n,

(28)

while in the second case we have

min
w

w′Σw

s.t. min
µ∈E

µ′w ≥ r̄

1′w = 1

− 1 ≤ wi ≤ 1 i = 1, . . . n.

(29)

The two sets of results are discussed in Section 7.

6 The Dataset

The dataset consists of the stocks which compose the Euro Stoxx 50 Index. The index
covers 50 stocks from 12 Eurozone countries.18 The 50 stocks in the index are generally
very liquid. For each of them there are call and put options, with various strikes, quoted
in the market (with the only exception of the stocks of the company CRH, for which
there were no quoted options at the time we built our dataset). Since we were interested
in a static asset allocation, we fixed a specific date (31 March 2011) as the initial time
of our analysis, and for each stock we focused on the collection of options which expired
in June 2011 (for most of the options the maturity date was June 17, while for the
options on stocks corresponding to Italian companies - Generali, Enel, Eni, Intesa San
Paolo, Telecom Italia, Unicredit - the expiration date was June 16). For each option the
time-to-maturity was thus equal to 0.21 years.

17In addition, we implemented the portfolio optimization without any constraint on the portfolio
weights, but the results were highly unsatisfactory due to the presence of extremly positive and extremely
negative weights, as expected.

18Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands,
Portugal and Spain.
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Having fixed the expiration date, for each stock we gathered the data regarding call
and put options written on that stock (strike price, underlying price and market value
of the option)19 as well as the information about the options written on the Euro Stoxx
50 Index. In the case of the index, we built a time series made of 20 periods: we started
from the family of options expiring on 17 June 2011 and quoted on 31 March 2011 and
we went backwards for 20 months, taking market prices of options on Euro Stoxx 50
having time to maturity equal to 0.21 years. This time series was used to determine the
risk aversion coefficient γ (see Section 3). The market prices of the option expiring on
17 June 2011 were also used in the construction of the variance/covariance matrix (see
Section 4).

For the estimate of the historical correlation matrix, we used the daily prices of the
50 stocks composing the index from 8 July 2005 to 1 April 2011.

7 Empirical results

In order to measure the effect of the robust optimization methodology, we construct five
efficient frontiers:

• estimated Markovitz efficient frontier: the efficient frontier obtained by using the
estimated expected-return vector π̂ to compute the optimal portfolio according to
the standard Markovitz mean-variance approach;

• estimated robust efficient frontier: the efficient frontier obtained by using the esti-
mated expected-return vector π̂ to compute the optimal portfolio according to the
robust optimization approach;

• true efficient frontier: the efficient frontier computed by using the true expected
returns (unobservable, and represented by the equilibrium returns π) to compute
the optimal portfolio;

• actual Markovitz efficient frontier: the efficient frontier obtained taking the portfo-
lios on the estimated Markowitz efficient frontier and then calulating their expected
returns using the true expected returns;

• actual robust efficient frontier: the efficient frontier obtained by using the true
expected returns π to compute the optimal portfolio according to the Robust
Optimization approach.

Figure 1 and Figure 2 illustrate these five efficient frontiers obtained when considering
no short-sale restrictions and lower and upper bound restrictions on the portfolio weights,
respectively. As expected, in both cases we can see that when we use robust optimization
the actual and the estimated frontiers lie closer to each other with respect to the related
frontiers obtained with the standard Markovitz mean-variance optimization. This is

19All the data are from Thomson Reuters Datastream.
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Figure 1 – Efficient frontiers obtained with no short-sale constraint.
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because, by construction, the objective function in the robust optimization problem
is based on reducing the distance between the predicted and the actual frontier.20 In
addition, by incorporating the estimation errors in the portfolio construction process, we
significantly reduce their effects on the optimal portfolio. Moreover, what is remarkable
is that the robust estimated and actual efficient frontier are not only closer together, but
also closer to the true efficient frontier.

Table 1 shows the number of stocks selected in the Robust and Markovitz optimiza-
tion problems, without and with no short-sale constraint, respectively (i.e., the number
of stocks which are assigned a non-zero weight). This table displays also the minimum
and the maximum values for the asset weights. The results are obtained when setting
the minimum expected annual return of the portfolio equal to 0.10, that is the historical
mean return of the Euro Area Market General Index (computed by Datastream).

From Table 1 we can see that when we do not impose no short-sale constraint on
the portfolio weights (±1) in our optimization problems (both robust and Markovitz),
we select all the available stocks in the index. In this case the weights reflect more
extreme short and long positions in the Markovitz portfolio rather than in the robust
portfolio, as we can see from the higher absolute value of both the minimum and the

20See Ceria and Stubbs (2006) for technical details.
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Figure 2 – Efficient frontiers obtained without no short-sale constraint.
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Table 1 – Number of stocks and weights for the different portfolios (1).
(1) LU refers to lower and upper bounds ±1, while NSS refers to no short-sale constraints.

Number of stocks Minimum weight Maximum weight

Robust LU 50 -0.0368 0.0763
Markovitz LU 50 -0.1994 0.7003
Robust NSS 33 0.0057 0.1091

Markovitz NSS 13 0.0018 0.4212

maximum weights. When we impose no short-sale constraint, on the other hand, the
robust portfolio selects a more consistent number of stocks than the Markovitz portfolio.
Moreover, the robust portfolio assignes more homogeneous weights to the selected stocks.

Finally, in order to evaluate the performance of our model we consider two criteria:

• the out-of-sample Sharpe Ratio, defined as the sample mean of out-of-sample excess
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returns (over the risk-free rate), divided by their sample standard deviation:

SRout =
(µreal − rf )Tw√

wTΣrealw
(30)

where µreal are the realized returns of the stocks in the portfolio, rf is the risk-free
rate, w is the weights vector, and Σreal is the variance of the realized portfolio
returns;

• the Certainty-equivalent (CEQ) return, defined as the risk-free rate that an investor
is willing to accept rather than adopting a particular risky portfolio strategy:

CEQ = (µreal − rf )Tw − γ

2
(wTΣrealw), (31)

where γ is the risk aversion.

We compare the value of the two measures obtained with the robust optimization
method21 (both with the lower-upper bounds on the weights and with the no-short
sales constraints) to those obtained by implementing three simpler strategies:

• Index Buy-and-Hold : this strategy considers the returns that would have been
achieved by investing directly on the Euro Stoxx 50 Index on 31 March 2011 and
selling it on 17 June 2011;22

• the 1/N Portfolio Strategy : this strategy, proposed by De Miguel, Garlappi and
Uppal (2009), consists in selecting a portfolio with all the N stocks in the index,
by assigning weight 1/N to each one;

• a momentum strategy : this strategy consists of selecting only the G stocks with
positive returns in the previous year and allocating a portfolio with weights 1/G
on those stocks.

Table 2 shows the out-of-sample annualized Sharpe Ratios and Certainty-Equivalent
returns obtained in the different cases.

From Table 2 we can see that the robust portfolio selected when imposing lower and
upper bounds shows the best out-of-sample performance with respect to both criteria,
giving the highest Sharpe Ratio and the highest certainty-equivalent-return.

8 Conclusions

In this paper we propose a methodology which extends the forward-looking appraoch of
Kostakis, Panigirtzoglou and Skiadopoulos (2010) to the case of a portfolio consisting

21We set the target minimum annual expected return in our optimization problem equal to 0.10, as in
Table 1.

22Note that the Euro Stoxx 50 weights remained unvaried between these dates.
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Table 2 – Sharpe Ratio for the different portfolios

Robust
Portfolio LU

Robust
Portfolio NSS

Index
Buy-and-Hold

Equally weighted
Portfolio

G-Stocks
Portfolio

Sharpe Ratio 2.67 1.82 -1.41 1.81 0.73
CEQ 0.384 0.2549 -0.2502 0.268 0.0978

of a variety of risky assets. We deal with the empirical implementation of a static
asset allocation problem, using information extracted from the market prices of options
written on the Euro Stoxx 50 Index and its constituents.

A key issue that arose in the generalization of this option-implied distribution ap-
proach to the case of N risky assets is related to the computation of the correlation
structure among the assets, which has to be coherent with the related option-implied
variances. To this aim we develop an ad-hoc procedure to integrate the historical stock
returns with the option implied distributions of the stocks and the index.

The asset allocation is performed using the robust optimization technique. This
methodology has been developed to cope with estimation errors in the estimates of
expected returns and their error-magnification effect. Robust Optimization, in fact,
considers the estimation errors for the mean returns directly in the optimization problem
itself, and performs an asset allocation that is robust to these errors. The starting point
of the robust asset allocation was our best guess vector for the asset returns (obtained
here through an equilibrium argument). The methodology then accounted for the worst
case scenario which could occur in a confidence region containing the best guess. We
introduced two sets of constraints in the optimization problem: first, we imposed a no
short-sale condition and then we constrained the portfolio weights to lie in the interval
[−1,+1].

In order to evaluate the results of our static asset allocation, we set a compari-
son among five efficient frontiers constructed using different methodologies (estimated
Markovitz efficient frontier, estimated robust efficient frontier, true efficient frontier,
actual Markovitz efficient frontier and actual robust efficient frontier).

We finally compare the out-of-sample performance of our robust portfolios to those
of the Index Buy-and-Hold strategy and of two alternatives portfolio: the 1/N portfolio
of De Miguel, Garlappi and Uppal (2009) (in which we build a portfolio with all the N
stocks in the index, by assigning weight 1/N to each one) and a momentum strategy,
in which we select only the G stocks with positive returns in the previous year, and
we allocate a portfolio with weight 1/G on these stocks. For this comparison we use
two standard performance criteria: the out-of-sample Sharpe Ratio and the Certainty-
Equivalent (CEQ) return for the expected utility of a mean-variance investor. In this
case, our strategy leads to good results, showing the best out-of-sample performance
according to both criteria. In future work, the methodology will be tested on a larger
dataset to evaluate its robustness and effectiveness.

20



We decided to apply our methodology to a family of stocks which were the con-
stituents of a quoted index, so that we could use the information extracted from market
data on the index to infer a coherent correlation structure among the stocks. A fur-
ther analysis will focus on the development of a procedure which can integrate option-
implied variances with the related covariances without requiring the existence of an
overall quoted index, so that the methodology will be much more flexible.
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